Microfluidic Reactor Array Device for Massively Parallel In-situ Synthesis of Oligonucleotides.
نویسندگان
چکیده
We have designed and fabricated a microfluidic reactor array device for massively parallel in-situ synthesis of oligonucleotides (oDNA). The device is made of glass anodically bonded to silicon consisting of three level features: microreactors, microchannels and through inlet/outlet holes. Main challenges in the design of this device include preventing diffusion of photogenerated reagents upon activation and achieving uniform reagent flow through thousands of parallel reactors. The device embodies a simple and effective dynamic isolation mechanism which prevents the intermixing of active reagents between discrete microreactors. Depending on the design parameters, it is possible to achieve uniform flow and synthesis reaction in all of the reactors by proper design of the microreactors and the microchannels. We demonstrated the use of this device on a solution-based, light-directed parallel in-situ oDNA synthesis. We were able to synthesize long oDNA, up to 120 mers at stepwise yield of 98 %. The quality of our microfluidic oDNA microarray including sensitivity, signal noise, specificity, spot variation and accuracy was characterized. Our microfluidic reactor array devices show a great potential for genomics and proteomics researches.
منابع مشابه
C0lc00577k 1629..1637
An optical tweezers directed parallel DNA oligonucleotide synthesis methodology is described in which controlled pore glass (CPG) beads act as solid substrates in a two-stream microfluidic reactor. The reactor contains two parallel sets of physical confinement features that retain beads in the reagent stream for synthetic reaction but allow the beads to be optically trapped and transferred betw...
متن کاملA versatile microreactor platform featuring a chemical-resistant microvalve array for addressable multiplex syntheses and assays
A versatile microreactor platform featuring a novel chemical-resistant microvalve array has been developed using combined silicon/polymer micromachining and a special polymer membrane transfer process. The basic valve unit in the array has a typical ‘transistor’ structure and a PDMS/parylene double-layer valve membrane. A robust multiplexing algorithm is also proposed for individual addressing ...
متن کاملDigital polymerase chain reaction in an array of femtoliter polydimethylsiloxane microreactors.
We developed a simple, compact microfluidic device to perform high dynamic-range digital polymerase chain reaction (dPCR) in an array of isolated 36-femtoliter microreactors. The density of the microreactors exceeded 20000/mm(2). This device, made from polydimethylsiloxane (PDMS), allows the samples to be loaded into all microreactors simultaneously. The microreactors are completely sealed thro...
متن کاملOn-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode.
Many pharmaceuticals are proteins or their development is based on proteins. Cell-free protein synthesis (CFPS) is an innovative alternative to conventional cell based systems which enables the production of proteins with complex and even new characteristics. However, the short lifetime, low protein production and expensive reagent costs are still limitations of CFPS. Novel automated microfluid...
متن کاملImprovement of Methanol Synthesis Process through a Novel Sorption-Enhanced Fluidized-bed Reactor, Part I: Mathematical Modeling
In the first part of two section paper, a mathematical model of the fluidized bed reactor in the presence of in-situ water adsorbent for methanol synthesis is assessed. The bubbling two-phase regime is applied to model the fluidization concept. The binary adsorbent and catalyst particles system can be separated from each other based on their density difference. The heavy catalyst particles tend...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sensors and actuators. B, Chemical
دوره 140 2 شماره
صفحات -
تاریخ انتشار 2009